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Vibration and Damping Analysis of Composite Laminates
Using Shear Deformable Finite Element

K. N. Koo* and I. Leet
Korea Advanced Institute of Science and Technology, Taejon, Republic of Korea

The effects of transverse shear deformation on the modal loss factors as well as the natural frequencies of
composite laminated plates have been studied using the finite element method based on the shear deformable
plate theory. The complex modulus of an orthotropic lamina is employed to model damping effect, and a modal
approach to the resultant complex eigenvalue problem is introduced to save a considerable amount of computa-
tion time. The present resuli gives a good agreement with the solution of the modal strain energy (MSE) method.
The damping is very high when the composite laminated plates are subject to large transverse shear deformation

as well as in-plane shear deformation.

Nomenclature

= transverse shear stiffness

= lengths of plate in x and y directions, respectively

= bending stiffness

= elastic moduli

= thickness of laminate

=v -1

= stiffness and mass matrices, respectively

= resultant moment and shear force, respectively

= reduced stiffness

= generalized eigenvector

= thickness of lamina

= displacements in x, y,
respectively

= fiber volume fraction

= loss angle

= strain and stress, respectively

= damping ratio

= loss factor

= fiber orientation

= eigenvalue

= mass density of laminate

= modal matrix

= rotation of the transverse normal

= specific damping capacity

= shape function '

= angular frequency
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Subscripts

0 = value for midplane

1,2,3 = principal axis of lamina

x, ¥, z = reference of axis of laminate

s = operator for partial differentiation

Superscripts

R, 1 =real and imaginary parts of complex value,
respectively

T = operator of transpose of matrix

* = complex value
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Introduction

HE damping in composite materials plays an important

role in controlling the resonant response of aerospace
structures and thus in prolonging their service life under re-
peated loading or impact.! Fiber-reinforced composites, in
general, have a higher damping than metals. Howevér, their
value depends on fiber and resin types, fiber orientation, and
stacking sequence.?

Research on the damping analysis of composites is not so
extensive as that on the undamped free vibration analysis.
Gibson and Plunkett?® reviewed experiméntal and analytical
efforts to characterize the dynamic properties of fiber-rein-
forced composite materials. Lin et al.* used a damped element
model based on the modal strain energy (MSE) method to
predict the specific damping capacity (SDC) of composite
laminated plates. Recently, Bicos and Springer? introduced the
damped element model into a shell structure. Hashin® applied
the elastic-viscoelastic correspondence principle to relate the
elastic moduli and creep compliances of the viscoelastic com-
posites. Alam and Asnani’ used the concept of the complex
modulus for the vibration and damping analysis for composite
plates and shells by series solution. The complex modulus,
which consists of a real part representing elastic stiffness and
an imaginary part representing dissipation, has been widely
used to model the behavior of linear viscoelastic materials
under sinusoidal vibration. Also, Malhotra et al.? studied
damping characteristics of orthotropic triangular plates by
using the complex moduli and three-noded triangular finite
elements based on the classical plate theory.

In this paper, the complex eigenvalue problem based on
complex moduli is formulated by using a shear deformable
finite element method. Because the complex eigenvalue prob-
lem with complex stiffness matrix needs a large amount of
computation time, many researchers have preferred the MSE
method in which both strain energy and dissipated energy are
obtained from undamped mode shape. However, that disad-
vantage can be overcome by using a modal approach. As an
alternative method to the MSE method, the modal approach
to damping analysis of composite laminated plates is intro-
duced to save a considerable amount of computation time by

reducing the large degrees of freedom of the complex eigen-

value problem. The modal approach gives more accurate re-
sults than the MSE method, especially for high damping prob-
lems. Although the transverse shear effect was considered-on
the undamped free vibration in many papers, it is not so easy
to find that effect on the damping characteristics. In this
paper, the shear deformable plate theory is applied to the vi-
bration and damping analysis of fiber-reinforced composite
laminates to see the transverse shear effect. The developed
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computer program can predict the natural frequencies, the
modal loss factors, and the complex modal vectors.

Theory
Complex Modulus of Lamina

Damping is a quality inherent in all known materials and
affects the dynamic response greatly near the resonant fre-
quency. The damping of -given structures has different
sources.’ First, and our concern, is the ‘‘material damping,”’
which is present in any material and is the minimum level that
total damping can achieve. Next is the ‘‘structural damping,”’
which occurs when two or more neighboring components of
structure rub against each other while vibrating. A third mech-
anism is the ‘‘viscous damping,”” where dissipation occurs by
motion within a fluid.

Definitions of damping are varied according to testing
method, and their relationship is as follows:

1= any=2¢ 2 )

According to the elastic-viscoelastic correspondence princi-

ple, the complex moduli of an orthotropic material are defined
as follows:

El =E(+imn), E; =E(1+imn) :
Gy = Gn(l +inyp), Gh=Gp(l+iny)
Gy = Gyl + i 1)

The constitutive relations in x-y coordinates (Fig. 1) for the £t
layer become
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Finite Element Formulation

The transverse shear deformation of a vibrating plate be-
comes more important when the length-to-thickness ratio de-
creases and when the mode number and the ratio of the
extensional modulus:to the shear modulus incréase. Another
advantage of the shear deformable plate theory is the simplic-
ity in formulating a finite element model because this theory
requires only C° elements. Using the plate theory developed by

Fig.1 Coordinate systems of geometric axes and principal material
axes.

Yang et al.!0 which is the extension of the Mindlin plate theory
to anisotropic plates, the displacements are assumed to be of
the form

ux, ¥, z, t) = up(x, ¥, 1) + zéx(x, ¥, £)
v(x, ¥, 2, D =vo(x, ¥, 1) +2¢,(x, ¥, 1) @

wix, y, 1y =wx, », 1)
where ¢ is the time.
The resultant forces and moments are obtained by integrat-
ing the stresses, given in Eq. (3), through the laminate thick-
ness. For the symmetric laminates, we have

M, Dy, Dy, Dig Py x
M, y (= DI*Z Dz*z D;G ¢y,y
M, Dy Dy D by + Dyx

%)
{Qy} - [A:4 A:S:l {w:y + qby}
Qx A:S A5*5 w)x + ¢x
The assumption for the shear deformation, Eq. (4), gives
constant shear distribution through the plate thickness. There-
fore, for the more accurate estimation of shear forces, the
transverse shear stiffness 4 ,j is determined from the assump-

tion that the transverse shear stresses are distributed paraboli-
cally across the laminated thickness!!:

N

A5 ==Y (O« [(Zk —Zk-1)—

5 4
073
k=1

e (z¢ — zi- 1)]
)

i,j=4,5
The equations of motion in terms of moment and transverse
shear resultants, neglecting body forces and transverse load,

are obtained by integrating the equilibrium equations:

oy &y o "
%‘ + %y"y - Q= I‘Z’Zx (7b)
a_z;% + aa—]\j’ ~Q, = Ia;zy (70)
where P and I are defined as
h
P n= F—’l (1,z9) p dz : ®

2
The governing equation can be obtained by substituting Eq.

(5) into Eg. (7) and assuming sinusoidal oscillation with re-
spect to time:
[Ags Wy + &) + Ass (W + &)L
F AL Wy + b))+ Ags Wy + 01, = —NPw  (9a)
[D}\¢sx + Dizdyy + Dis (9sy + by0)x
+ [Digxx + Disbyy + Dig ($xy + ¢35
— Al Wy +6y) —Ass Wi+ ¢)= —NT ¢y (9b)
[Dis bxx + Dis &,y + Dee(sy + by,)]x
+ (D} $ux + D3z 65y + Dogldy + b)),
— AW,y + by)

—Ai(Wy + )= = N1¢, ‘ %)
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The niidplane Q of the plate is subdivided into a finite number
of elements Q.(e =1, 2, .). Over each element )., the
displacements are interpolated by expressions of the form

n

w= E wi‘pi = E d)x,»"//i ¢y = E ¢y,-\[/i (10)

i=1 =1 i=1

where the various y; are the interpolation functions, and # is
the number of nodes per element. With the use of Eq. (10) and
¥; as weighting function, the finite element equations can be
obtained by applying the weighted residual method to Eq. (9):

K™ K™ (K™ tw}

K] K] {ox}
K™ {6y}

MU [0 [0] {w} {0}

-\ (M) [0] {é:} (=4 [0} an
(M) {é,} {0}
where the element stiffness and mass matrices are
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The reduced Gauss integration rule is used for the evaluation
of the transverse shear terms to avoid the shear locking.!?
Nine-node quadrilateral isoparametric elements are used in
this analysis.

Modal Approach

Since Eq. (11) is the complex eigenvalue problem with large
degree of freedom (DOF), it requires a large amount of com-
putation time. Therefore, a modal approach is adopted. Equa-
tion (11) can be rewritten in the following matrix form:

[K*'-NMlu=0 (13)

Eigenvector u can be transformed into ¢* using undamped
vibration modes ® as basis functions for damped analysis:

u=2q" 14

where ® = [¢; ¢ @3, . . ., On] in the case to taking N modes.
Premultiplying Eq. (13) with &7 and substituting Eq. (14) into
Eq. (13), we obtain

PTK ~-N M@ g* =0 (¢5))

As a result, the dimension of Eq. (15) is reduced to N X N.
The reduced eigenvalue problem, Eq. (15), gives the natural
frequency w and modal loss factor 5 for each mode as follows:

Im[A']

= Re[N'] 7= Re[V]

(16)

where Re[ ] and Im[ ] mean real and imaginary parts, respec-
tively.

Results and Discussion

Comparison with Reported Results

The composite laminates used in this analysis consist of high
modulus and strength (HMS) carbon fiber in DX-210 epoxy
resin that is given in Table 1. This material was also used by
Lin et al.* The value for 7,; was not given in Ref. 4, and the
value for 7,3 was taken as the same value as that for 5;;. The
boundary conditions of rectangular composite plates are all
free (FFFF). Plate data used for the comparison with the
results of Lin et al.* are detailed in Table 2. The convergence
test results of natural frequencies for plate 762 in Table 2 are
given in Fig. 2. The natural frequencies for 5 X 5 mesh, which
are obtained by using the nine-node isoparametric element,
are regarded as converged. The loss factors were not much
affected by the number of modes chosen for the analysis. In
this modal approach, 10 modes excluding rigid-body modes
were taken for the computation.

Table 3 shows the comparison between the present results
and the results of Lin et al.* for the natural frequencies and the
modal loss factors. In this case, the plate is very thin. The
present results give a good agreement with the results of Lin et
al.* The modal approach gives good results without loss of
accuracy. There is a little difference between the modal ap-
proach and the MSE method. The present modal approach
gives better results than the MSE method compared with the
solution of the original complex eigensystem. Elastic moduli
and loss factors for a specified fiber volume fraction in Table
2 are evaluated by the micromechanics theory.!® In this analy-
sis, a nine-node isoparametric element is used. The mesh size
is selected as 5 X 5. At each node point, we have three degrees
of freedom (w, ¢,, and ¢,). Therefore, if we use the original
system, Eq. (13), the matrix dimension of the complex eigen-
value problem is 363 X 363. Instead of solving the time-con-
suming complex eigenvalue problem, we solve the reduced
eigenvalue problem of which the matrix dimension of 10 x 10.
Therefore, we can save a large amount of computation time by
reducing the matrix dimension of the complex eigensystem.

Transverse Shear Effects

To see the transverse shear effects on the natural frequen-
cies and modal loss factors, the following material properties
of HMS/DX-210 are used: p = 1566.0 kg/m?, ¥y = 0.516, and
a = b =200 mm.

For a simply supported plate (SSSS) and a clamped plate
(CCCCQ), the following boundary conditions are applied, re-
spectively:

1) Simply supported plate (SSSS)

w =0 at all edges
ox(x, 0) = ¢,(x, b) =
¢,(0, y) = ¢y(a, y) =
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Table 1 Material properties?

Material Ei, GPa E>, GPa Gy, GPa 7 17 712 vi2 Vr
HMS/DX-210 172.7 7.2 3.76 7.162x10~4 67816 x 10-3 1.122x 102 0.3 0.5
DX-210/BF400 3.21 3.21 1.20 1.041 x 102 1.041 x 10~2 1.064 x10-2 0.34 0.0
Table 2 Plate data4
Plate  No. of  Density, Thickness, a(=>), Stacking
No. - layers kg/m3 mm mm Vy sequence
762 8 1566 1.58 178 0.516 [0/0/0/01s
764 8 1446 2.12 235 0.342 [0/90/0/90}s
770 8 1551.4 1.62 215 0.494 [0/90/45/ — 45]s
772 12 1636 2.02 216 0.618 [0/ ¥ 60/0/ ¥ 60)5
Table 3 Natural frequencies and modal loss factors for all-free plates
Natural frequencies, Hz Modal loss factors, x 10-2
Present Lin et al4 Present Lin et al*
Plate Modal MSE  Original
no. Mode FEM FEM Exp approach? method system? FEM¢ Exp
762 1 83.90 83.57 81.5 1.0630  1.0628 1.0694 1.0759 1.1141
2 111.93 118.42 107.4 0.6418 0.6459 0.6401 0.6821 0.7799
3 204.19 207.79 196.6 0.9347  0.9341 0.9341 0.9374 0.85%4
4 311.32 329.41 295.5 0.6422 0.6462 0.6426 0.6573 0.7480
5 405.06 419.83 382.5 0.8123  0.8115 0.8123 0.8133 0.7639
6 546.70 546.93 531.0 0.0771  0.0797 0.0772 0.0748 ——
764 , 1 53.20 58.10 68.9 1.4773 1.4772 - 1.4773 1.2414 1.0584
2 210.21 213.31 218.9 0.1591 0.1603 0.1590 0.1448 0.1671
3 23579 243.47 251.2 0.4294  0.4294 0.4295 0.3979 0.4138
4 300.39 302.51 305.4 0.1033 0.1033 0.1033 0.0955 0.1464
5 318.47 324.16 323.5 0.2540 0.2540 0.2539 0.2403 0.2706
6 415.65 441.62 452.5 0.4700 0.4662 0.4700 0.4361 0.4775
770 1 86.78 86.33 77.8 - 0.4860 0.4895 0.4856 0.4950 0.6525
2 255.30 224.49 202.7 0.1235  0.1255 0.1235 0.1273 0.1464
3 280.78 280.42 258.0 .0.2659  0.2659 0.2659 0.2706 0.2706
4 300.10 298.81 298.7 0.0941 0.0933  0.0942 0.0923 0.1225
5 349.61 348.36 322.0 0.1877 0.1897 0.1876 0.1894 0.1910
6 510.55 512.24 496.7 0.2853  0.2842 0.2853 0.2881 0.3342
772 1 166.46 165.17 156.6 0.2232  0.2266 0.2231 0.2292 0.2228
2 276.64 279.14 272.0 0.1353  0.1383 0.1354 0.1480 0.1401
3 384.63 387.80 372.3 0.0972 0.0957 0.0972 0.1003 0.1035
4 431.01 432.57 407.8 0.1886  0.1898 0.1886 0.1958 0.2005
5 511.06 511.14 486.1 0.1517 0.1548 0.1517 0.1560 0.1576
6 787.74 800.37 779.0 0.1352 - 0.1342 0.1352 0.1464 ——

2Ten modes are used in the modal approach.
YMatrix dimension of Eq. (13) is 363 x 363, and stiffness matrix is complex valued.
“These results are computed by MSE method.

2) Clamped plate (CCCC)
w = 0 at all edges
¢« = ¢, = 0 at all edges

Figure 3 shows the nondimensionalized natural frequencies,
wa*(p/E>h?)" and modal loss factors, n vs the side-to-thick-
ness ratio, a/h for an all-free [0/90/0/90]; square plate. Both
the natural frequencies and the modal loss factors are greatly
affected by the side-to-thickness ratio. The effect of the trans-
verse shear is significant for the thick plate (when the side-to-
thickness ratio is less than 20). It is also shown that the higher
the mode number, the larger the transverse shear effect.

Figure 4 illustrates the fundamental frequencies and modal
loss factors of all-free square plates with three types of stack-
ing sequences: [0/0/0/0];, [ =45/ x45],, and [0/90/0/90];.
The angle-ply [ & 45/ + 45], plate has the highest natural fre-
quency and the lowest loss factor. The cross-ply [0/90/0/90]
plate has the highest loss factor. The values of natural fre-
quencies and the loss factors of the [0/0/0/0], plate are very
close to those of the [ & 45/ + 45], plate. The transverse shear
effects for the three plates become dominant when the side-to-
thickness ratio (@/k) is less than 20. The angle-ply [ +45/

+ 45], plate has the greatest effect of the transverse shear on
the natural frequency and the loss factor. Since the fundamen-
tal mode shape is torsion and the [ + 45/ x 45]; plate among
three plates has the lowest ratio of A4 (or Ass) to Dgs, this
plate has the greatest effect of the transverse shear.

Figure 5 describes the fundamental frequencies and the
modal loss factors of simply supported square plates with
three types of stacking sequences: [0/0/0/0);, [ + 45/ = 45];,
and [0/90/0/90],. These sequences are the same as those given
in Fig. 4. The angle-ply [ + 45/ +45]_ plate has the highest
natural frequency and the lowest loss factor when a/h >15.
The [0/0/0/0], and [0/90/0/90]; plates have almost the same
fundamental frequencies and loss factors. The transverse
shear effects for the simply supported plates become dominant
when a/h is less than 30. This result shows that SSSS plates are
“more transverse shear deformable” than FFFF plates be-
cause SSSS plates have more constraints at the boundaries
compared with FFFF plates.

Figure 6 shows the fundamental frequencies and the modal
loss factors of clamped square plates with the same stacking
sequences as given in Fig. 4: [0/0/0/0),, [ £ 45/ % 45];, and
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Fig. 2 Convergence of natural frequencies of plate 762 (natural fre-
quencies are normalized by those for 6 X 6 elements).
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Fig. 3 Dependency of the transverse shear effect on the mode num-
ber for all-free (FFFF) [0/90/0/90]; plate: a) natural frequencies and
b) modal loss factors.
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Fig. 4 Fundamental frequencies and loss factors for unidirectional,
cross-ply, and angle-ply all-free (FFFF) plate: a) fundamental fre-
quencies and b) fundamental loss factors.

[0/90/0/90];. The natural frequencies and the loss factors of
the three plates are very close. Therefore, the clamped plates
have very small influence on the stacking sequence. The trans-
verse shear effects of these plates become dominant when a/h
is less than 40. The clamped plate has the greatest transverse
shear effect among three types of plate: clamped, simply sup-
ported, and free. The transverse shear effect increases as the
degree of constraints on the boundary increases.

Effect of Fiber Orientation

To study the effect of the fiber orientation on the natural
frequency and the modal loss factor, the material properties
given in Table 1 and the plate data for plate 762 given in Table
2 are used except for the stacking sequence of [0/ + 6/90];.
The all-free boundary condition is considered.

Figure 7 shows the contour plots of the lowest first four
modes for two fiber orientations: # =0 and 45 deg of the
[0/ = 6/90]; plate. Because the imaginary parts of the mode
shape are very small compared with the real parts, only the
real parts are plotted in Fig.. 7. The lines with the * symbol are
nodal lines. The mode shapes are significantly affected by the
fiber orientation. When the fiber orientation angle is zero, the
first mode is the first torsion, the second mode is the first
bending, the third mode is the second torsion, and the fourth
mode is the second bending. When the fiber orientation angle
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is 45 deg, the mode shapes are quite different from those for
the zero fiber orientation.

Figures 8-11 show the natural frequencies and the modal
loss factors for the various fiber orientations. Figure 8 shows
the natural frequencies and the modal loss factors for the first
mode of which the typical shape is pure torsion related with
in-plane shear at § =0 and 90 deg. The plates for the fiber
orientation besides § =0 and 90 deg have less damping by
virtue of bending-torsion coupling. When the fiber orientation
is near 45 deg, the natural frequency becomes the highest value
and the loss factor becomes the lowest value. Figure 9 shows
the natural frequencies and the modal loss factors for the
second mode of which the typical shape is the first bending.
When @ is zero, the second mode shape is pure bending.The
reason for the higher value of the modal loss factors in the
range of 6 = 0-20 deg is that a large amount of energy dissipa-
tion occurs in the matrix. As the fiber orientation increases,
the fibers in the =6 layers retain higher strain energy to
increase the natural frequency and decrease the modal loss
factor. Figure 10 shows the results of the third mode of which
the shape is the second torsion. When the fiber orientation 0 is
0 deg, the torsional deformation results in a large amount of
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Fig. 8 Natural frequencies and modal loss factors of the first mode
for the [0/ +6/90); plate.
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Fig. 9 Natural frequencies and modal loss factors of the second
mode for the [0/ 0/90]; plate.

500 12

400

o Natural frequencies
A LF. for Ty of HMS/DX-210

[0/+0/90]s

300

Natural frequencies, f(Hz)
o
Loss factors, 1 (x107%)

ollLilIlllllllll

0 10 20 30 40 50 60 70 80 90
Angle, ©(degree)

Fig. 10 Natural frequencies and modal loss factors of the third mode
for the [0/ +6/90]; plate.
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Fig. 11 Natural frequencies and lhodal loss factors of the fourth
mode for the [0/ +60/90] plate.

matrix deformation in =+ @ layers. Therefore, the natural fre-
quency is the lowest and the modal loss factor is the highest at
0 = 0 deg. Figure 11 depicts the results for the fourth mode.
The severe change in mode shape occurs in the fiber orienta-
tion between 35 and 40 deg. At this fiber orientation, the
modal transfer will occur. This phenomenon can be explained
by the curve veering phenomena.!*!> The fourth mode is a
bending dominant mode.

Conclusions

The shear deformable plate theory is applied to the vibra-
tion and damping analysis of the fiber-reinforced composite
laminated plates. The complex eigenvalue problem using finite
element method is solved by the modal approach, which gives
accurate results and saves a large amount of computation
time.

The effects of the transverse shear on the natural frequen-
cies and the modal loss factors are studied for the various
boundary conditions and stacking sequences. The result shows
that the transverse shear effect of the composite laminated
plates gives high damping. Boundary condition affects the
damping as well as natural frequency. Among the clamped,
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simply supported, and free plates, the clamped plate has the
highest transverse shear effect, and the transverse shear effect
increases as the mode number increases.

Also, the effects of the fiber orientation on the natural
frequencies and the modal loss factors are investigated for thin
plates. The modal loss factor is greatly affected by the mode
shape and is large when the matrix is subjected to the torsional
sheéar deformations. Therefore, both the transverse shear and
the in-plane shear increase the value of the damping of the
composite plate.
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